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Abstract. The sequence A(n)n≥0 of Apéry numbers can be interpolated to

C by an entire function. We give a formula for the Taylor coefficients of this
function, centered at the origin, as a Z-linear combination of multiple zeta

values. We then show that for integers n whose base-p digits belong to a
certain set, A(n) satisfies a Lucas congruence modulo p2.

1. Introduction

For each integer n ≥ 0, the nth Apéry number is defined by

A(n) :=
∑
k≥0

(
n

k

)2(
n+ k

k

)2

.

These numbers arose in Apéry’s proof of the irrationality of ζ(3). This sum is finite,
since

(
n
k

)
= 0 when k > n. The sequence A(n)n≥0 is

1, 5, 73, 1445, 33001, 819005, 21460825, 584307365, . . . .

The Apéry numbers satisfy the recurrence

(1) n3A(n)− (34n3 − 51n2 + 27n− 5)A(n− 1) + (n− 1)3A(n− 2) = 0

for all integers n ≥ 2.
Exceptional properties of the Apéry sequence have been observed in many set-

tings [15]. Gessel [6] showed that the Apéry numbers satisfy the Lucas congruence

(2) A(d+ pn) ≡ A(d)A(n) mod p

for all d ∈ {0, 1, . . . , p− 1} and n ≥ 0. Beukers [1] established the supercongruence
A(pαn− 1) ≡ A(pα−1n− 1) mod p3α for all primes p ≥ 5, and Straub [13] showed
that a related supercongruence holds more generally for a four-dimensional sequence
containing A(n)n≥0 as its diagonal.

Gessel also extended Congruence (2) to a congruence modulo p2 as follows. De-
fine the sequence A′(n)n≥0 by

(3) A′(n) := 2

n∑
k=0

(
n

k

)2(
n+ k

k

)2

(Hn+k −Hn−k) ,

where Hk = 1 + 1
2 + · · ·+ 1

k is the kth harmonic number. The sequence A′(n)n≥0 is

0, 12, 210, 4438, 104825,
13276637

5
, 70543291,

67890874657

35
, . . . .
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Then

(4) A(d+ pn) ≡ (A(d) + pnA′(d))A(n) mod p2

for all d ∈ {0, 1, . . . , p− 1} and for all n ≥ 0 [6, Theorem 4].
Gessel remarks that if A(n) can be extended to a differentiable function A(x) de-

fined for x ∈ R≥0 such thatA(x) satisfies Recurrence (1), thenA′(n) =
(
d
dxA(x)

)
|x=n.

As shown by Zagier [15, Proposition 1] and proved in an automated way by Osburn
and Straub [10, Remark 2.5], A(n) can be extended to an entire function A(z)
satisfying

(5) z3A(z)− (34z3 − 51z2 + 27z − 5)A(z − 1) + (z − 1)3A(z − 2)

=
8

π2
(2z − 1)(sin(πz))2

for all z ∈ C. Since both 8
π2 (2z − 1)(sin(πz))2 and its derivative vanish at inte-

ger values of z, it follows that A′(n) =
(
d
dzA(z)

)
|z=n, hence the notation A′(n).

Therefore the extension A(z) confirms Gessel’s intuition.
In this article we use an elementary approach to write the coefficients in the

Taylor series of A(z) =
∑
m≥0 amz

m at z = 0 as an explicit Z-linear combination
of multiple zeta values. A striking fact is that the coefficient of each multiple zeta
value is a signed power of 2. Let s1, s2, . . . , sj be positive integers with s1 ≥ 2. The
multiple zeta value ζ(s1, s2, . . . , sj) is defined as

ζ(s1, s2, . . . , sj) :=
∑

n1>n2>···>nj>0

1

ns11 n
s2
2 · · ·n

sj
j

.

The weight of ζ(s1, s2, . . . , sj) is s1 + s2 + · · ·+ sj .
Let χ(m) be the characteristic function of the set of odd numbers. That is,

χ(m) = 0 if m is even and χ(m) = 1 if m is odd. For a tuple s = (s1, s2, . . . , sj),
let e(s) = |{i : 2 ≤ i ≤ j and si = 2}|.

Theorem 1. Let A(z) =
∑
m≥0 amz

m be the Taylor series of the Apéry function,
centered at the origin. For each m ≥ 1,

am =
∑
s

(−1)
m−s1

2 2e(s)+χ(m)ζ(s1, s2, . . . , sj),

where the sum is over all tuples s = (s1, s2, . . . , sj), with j ≥ 1, of non-negative
integers satisfying

• s1 + s2 + · · ·+ sj = m,
• s1 = 3 if m is odd and s1 ∈ {2, 4} if m is even, and
• si ∈ {2, 4} for all i ∈ {2, . . . , j}.
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The first several coefficients are

a0 = 1

a1 = 0

a2 = ζ(2)

a3 = 2ζ(3)

a4 = ζ(4)− 2ζ(2, 2)

a5 = −4ζ(3, 2)

a6 = ζ(2, 4)− 2ζ(4, 2) + 4ζ(2, 2, 2)

a7 = 2ζ(3, 4) + 8ζ(3, 2, 2)

a8 = ζ(4, 4)− 2ζ(2, 2, 4)− 2ζ(2, 4, 2) + 4ζ(4, 2, 2)− 8ζ(2, 2, 2, 2)

a9 = −4ζ(3, 2, 4)− 4ζ(3, 4, 2)− 16ζ(3, 2, 2, 2).

Let F (m) be the mth Fibonacci number. Since the number of integer compositions
ofm using parts 1 and 2 is F (m+1), Theorem 1 expresses am as a linear combination
of F (m2 + 1) multiple zeta values if m is even and F (m−1

2 ) multiple zeta values if
m is odd.

Let P (m) be the number of integer compositions of m − 3 using parts 2 and 3.
Then P (m) is the mth Padovan number and satisfies the recurrence P (m) = P (m−
2) + P (m − 3) with initial conditions P (3) = 1, P (4) = 0, P (5) = 1. Let dm
be the dimension of the Q-vector space spanned by the weight-m multiple zeta
values. Recent progress by Brown [2] shows that dm ≤ P (m + 3). For m ≥ 13,
the representation of am in Theorem 1 uses fewer than P (m + 3) multiple zeta
values. Since F (m2 + 1) > P (m + 3) for m ∈ {4, 6, 8, 10, 12}, this implies that
a4, a6, a8, a10, a12 can be written as Q-linear combinations of fewer multiple zeta
values than Theorem 1 provides. Namely,

a4 = − 1
2ζ(4)

a6 = 3
2ζ(6)− 3ζ(4, 2)

a8 = − 13
24ζ(8) + 6ζ(4, 2, 2)

a10 = 7
8ζ(10) + 3ζ(2, 4, 4)− 12ζ(4, 2, 2, 2)

a12 = − 915
22112ζ(12) + 6ζ(4, 2, 2, 4) + 6ζ(4, 2, 4, 2) + 6ζ(4, 4, 2, 2) + 24ζ(4, 2, 2, 2, 2).

We prove Theorem 1 in Section 2. The proof technique can also be applied to
compute the Taylor coefficients for a larger family of hypergeometric functions.
We remark that there are some parallels between Theorem 1 and work of Cresson,
Fischler, and Rivoal [4], who show that a class of hypergeometric series can be de-
composed as Q-linear combinations of multiple zeta values. Numerically, Golyshev
and Zagier [7, Section 2.4] also obtained multiple zeta values in coefficients of a
formal power series related to the Apéry numbers.

Returning to congruences for A(n) in Section 3, we consider the following ques-
tion. For which base-p digits d does Congruence (2) hold not just modulo p but
modulo p2? The following theorem characterizes such digits. Let

D(p) =
{
d ∈ {0, 1, . . . , p− 1} : A(d) ≡ A(p− 1− d) mod p2

}
.

Theorem 2. Let p be a prime, and let d ∈ {0, 1, . . . , p − 1}. The congruence
A(d+ pn) ≡ A(d)A(n) mod p2 holds for all n ∈ Z if and only if d ∈ D(p).
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In particular, if n is a non-negative integer and all digits in its standard base-p
representation n` · · ·n1n0 belong to D(p), then

A(n) ≡ A(n0)A(n1) · · ·A(n`) mod p2.

Theorem 2 has an analogue for binomial coefficients, established by the first-named
author [11].

2. Taylor coefficients of the Apéry function

In this section we give a proof of Theorem 1. Let N = {0, 1, 2, . . . }. The sequence
A(n)n≥0 can be interpolated to C using the gamma function Γ(z). Recall that Γ(z)
is a meromorphic function satisfying

Γ(1) = 1 and Γ(z + 1) = zΓ(z)

for z 6∈ −N. The gamma function has simple poles at the non-positive integers.
For n ≥ 0, we can write A(n) as

A(n) =
∑
k≥0

(
n

k

)2(
n+ k

k

)2

=
∑
k≥0

Γ(n+ k + 1)2

Γ(n− k + 1)2Γ(k + 1)4
.

We extend A(n) to complex values by defining

A(z) =
∑
k≥0

Γ(z + k + 1)2

Γ(z − k + 1)2Γ(k + 1)4
.

Note that for each k ∈ N the function Γ(z+k+1)2

Γ(z−k+1)2Γ(k+1)4 is a polynomial in z. Fur-

thermore, for each z ∈ C, the series
∑
k≥0

Γ(z+k+1)2

Γ(z−k+1)2Γ(k+1)4 is locally uniformly

convergent. Thus A(z) is an entire function, which we call the Apéry function.
We remark that A(z) can be written using the hypergeometric function 4F3. Let
(z)k := z(z+ 1)(z+ 2) · · · (z+ k− 1) be the Pochhammer symbol (rising factorial).

By writing Γ(z+k+1)2

Γ(z−k+1)2 = (−z)2
k(z + 1)2

k, we see that

A(z) =
∑
k≥0

(−z)k(−z)k(z + 1)k(z + 1)k
k!4

(6)

= 4F3(−z,−z, z + 1, z + 1; 1, 1, 1; 1).

Straub [13, Remark 1.3] proved the reflection formula A(−1− n) = A(n) for all
n ∈ Z. Equation (6) shows that this formula also holds for non-integers, since the
hypergeometric series is invariant under replacing z with −1− z.

Proposition 3. For all z ∈ C, we have A(−1− z) = A(z).

Figure 1 shows this symmetry on the real line. In light of Proposition 3, The-
orem 1 also gives us the Taylor expansion of A(z) at z = −1 for free. We note
that, at the symmetry point z = − 1

2 , Zagier has shown that A(− 1
2 ) = 16

π2L(f, 2)
where L(f, 2) is the critical L-value of f , the unique normalized Hecke eigenform
of weight 4 for Γ0(8); see [15] for an account and [16] for a generalization. There
is no reason to expect that the Taylor coefficients of A(z) centered at non-integer
points are Q-linear combinations of multiple zeta values.
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Figure 1. A plot of A(z) for real z in the interval −2 ≤ z ≤ 1,
showing the reflection symmetry A(−1− z) = A(z).

Let

(7) A(z) =
∑
k≥0

Γ(z + k + 1)2

Γ(z − k + 1)2Γ(k + 1)4
=
∑
m≥0

amz
m

be the Taylor series expansion of the Apéry function centered at the origin. It is
possible to compute am by directly evaluating the mth derivative A(m)(z) at z = 0.

Example 4. The derivative of the summand is

1
k!4

d
dz

Γ(z+k+1)2

Γ(z−k+1)2 = 1
k!4

Γ(z+k+1)2

Γ(z−k+1)2 (2ψ(z + k + 1)− 2ψ(z − k + 1)) ,

where the digamma function ψ(z) := Γ′(z)
Γ(z) is the logarithmic derivative of Γ(z).

This agrees with the expression for A′(n) in Equation (3). Since Γ(z+k+1)2

Γ(z−k+1)2 = O(z2)

as z → 0 and 2ψ(z + k + 1) − 2ψ(z − k + 1) has a simple pole at 0 for each k, we

have a1 = A′(0)
1! = 0. Similarly, the second derivative is

1
k!4

d2

dz2
Γ(z+k+1)2

Γ(z−k+1)2 = 1
k!4

Γ(z+k+1)2

Γ(z−k+1)2

(
4ψ(z + k + 1)2 + 2ψ′(z + k + 1)

− 8ψ(z + k + 1)ψ(z − k + 1) + 4ψ(z − k + 1)2 − 2ψ′(z − k + 1)
)
.

The series expansions of ψ(z + k + 1) and ψ(z − k + 1) imply A′′(0) =
∑
k≥1

2
k2 =

2ζ(2), so a2 = A′′(0)
2! = ζ(2).

Theorem 1 can be proved by carrying out the same approach for general m.
However, we give a shorter proof in the spirit of [5, Section 1.4].
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Proof of Theorem 1. We consider the summand in Equation (7). For k = 0, we

have Γ2(z+k+1)
Γ2(z−k+1)k!4 = 1. For k ≥ 1, we have

Γ2(z + k + 1)

Γ2(z − k + 1)k!4
= (z−k+1)2···(z−1)2z2(z+1)2···(z+k)2

k!4

=
(

1− z
k−1

)2

· · ·
(
1− z

1

)2 (
1 + z

1

)2 · · ·(1 + z
k−1

)2
z2

k2

(
1 + z

k

)2
=
(

1− z2

(k−1)2

)2

· · ·
(

1− z2

12

)2
z2

k2

(
1 + z

k

)2
=
(

1− 2 z
2

12 + z4

14

)
· · ·
(

1− 2 z2

(k−1)2 + z4

(k−1)4

)(
z2

k2 + 2 z
3

k3 + z4

k4

)
.(8)

Recall that χ(m) is the characteristic function of the set of odd numbers, and
e(s) = |{i : 2 ≤ i ≤ j and si = 2}| for a tuple s = (s1, s2, . . . , sj). By expanding the
product (8) to extract the coefficient of zm, one sees that this coefficient equals∑

s=(s1,...,sj)
s1+···+sj=m

∑
k=n1>n2>···>nj>0

(−1)
m−s1

2 2e(s)+χ(m) 1

ns11 n
s2
2 · · ·n

sj
j

,

where the outer sum is over all s described in the statement of Theorem 1. Now
we sum over all k to obtain am, and the statement follows. �

As discussed in Section 1, the coefficients a4, a6, a8, a10, a12 can be written as
Q-linear combinations of fewer multiple zeta values than given by Theorem 1. The
strategy given in the following example can be used to reduce am for all even m ≥ 4.

Example 5. For m = 10, Theorem 1 gives

a10 = ζ(2, 4, 4)− 2ζ(4, 2, 4)− 2ζ(4, 4, 2)

+ 4ζ(2, 2, 2, 4) + 4ζ(2, 2, 4, 2) + 4ζ(2, 4, 2, 2)− 8ζ(4, 2, 2, 2)

+ 16ζ(2, 2, 2, 2, 2).

We will rewrite several products ζ(s1, s2, . . . , sj)ζ(i) as linear combinations of mul-
tiple zeta values. For example,( ∑

k1>k2>0

1

ka1k
b
2

)(∑
k3>0

1

kc3

)

=
∑

k3>k1>k2>0

1

ka1k
b
2k
c
3

+
∑

k1>k3>k2>0

1

ka1k
b
2k
c
3

+
∑

k1>k2>k3>0

1

ka1k
b
2k
c
3

+
∑

k1>k2>0

1

ka+c
1 kb2

+
∑

k1>k2>0

1

ka1k
b+c
2

,

so that

ζ(a, b)ζ(c) = ζ(c, a, b) + ζ(a, c, b) + ζ(a, b, c) + ζ(a+ c, b) + ζ(a, b+ c).(9)

As in the derivation of Equation (9), we have ζ(a)ζ(b) = ζ(a, b) + ζ(b, a) + ζ(a+ b).
We first express −2ζ(4, 2, 4)− 2ζ(4, 4, 2) in terms of ζ(2, 4, 4) and ζ(10). By (9)

we have

ζ(4, 4)ζ(2) = ζ(2, 4, 4) + ζ(4, 2, 4) + ζ(4, 4, 2) + ζ(6, 4) + ζ(4, 6).
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The relations ζ(4)ζ(4) = 2ζ(4, 4) + ζ(8) and ζ(4)ζ(6) = ζ(4, 6) + ζ(6, 4) + ζ(10)
allow us to write

−2ζ(4, 2, 4)− 2ζ(4, 4, 2) = 2ζ(2, 4, 4) + 2ζ(4)ζ(6)− 2ζ(10)− ζ(4)2ζ(2) + ζ(8)ζ(2)

= 2ζ(2, 4, 4)− 3
40ζ(10)

using ζ(2) = π2

6 , ζ(4) = π4

90 , ζ(6) = π6

945 , ζ(8) = π8

9450 , and ζ(10) = π10

93555 . Next we
rewrite

4ζ(2, 2, 2, 4) + 4ζ(2, 2, 4, 2) + 4ζ(2, 4, 2, 2).

For this we use

ζ(2, 2, 2)ζ(4)− ζ(2, 2, 2, 4)− ζ(2, 2, 4, 2)− ζ(2, 4, 2, 2)− ζ(4, 2, 2, 2)

= ζ(2, 2, 6) + ζ(2, 6, 2) + ζ(6, 2, 2)

= ζ(2, 2)ζ(6)− (ζ(8, 2) + ζ(2, 8))

= ζ(2, 2)ζ(6)− (ζ(2)ζ(8)− ζ(10)).

Therefore 4ζ(2, 2, 2, 4)+4ζ(2, 2, 4, 2)+4ζ(2, 4, 2, 2) can be written using ζ(2, 2)ζ(6),
ζ(2, 2, 2)ζ(4), ζ(4, 2, 2, 2), and ζ(10). Finally, we use

ζ(2, . . . , 2︸ ︷︷ ︸
j

) =
π2j

(2j + 1)!

(see for example [8]) to write ζ(2, 2), ζ(2, 2, 2), and ζ(2, 2, 2, 2, 2). Consolidating
these results, we obtain

a10 = 7
8ζ(10) + 3ζ(2, 4, 4)− 12ζ(4, 2, 2, 2).

3. Lucas congruences modulo p2

Gessel [6] proved three theorems on congruences for A(n) where n ≥ 0. In
this section we generalize these theorems to n ∈ Z, making substantial use of the
reflection formula A(−1 − z) = A(z) from Proposition 3. We simplify one of the
arguments by using the fact that we can differentiate A(z). We then use these
congruences to prove Theorem 2.

First we generalize Gessel’s result that the Apéry numbers satisfy a Lucas con-
gruence modulo p [6, Theorem 1].

Theorem 6. Let p be a prime. For all d ∈ {0, 1, . . . , p− 1} and for all n ∈ Z, we
have A(d+ pn) ≡ A(d)A(n) mod p.

Proof. Gessel proved the statement for n ≥ 0. Let n ≤ −1. By Proposition 3,

A(d+ pn) = A(−1− (d+ pn))

= A((p− 1− d) + p (−1− n))

≡ A(p− 1− d)A(−1− n) mod p

= A(p− 1− d)A(n).

Malik and Straub [9, Lemma 6.2] proved that A(p− 1− d) ≡ A(d) mod p, which
completes the proof. �

Next we generalize Gessel’s congruence for A(pn) modulo p3 for p ≥ 5 and
variants for p = 2 and p = 3 [6, Theorem 3].

Theorem 7. For all n ∈ Z,
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• A(n) ≡ 5n mod 8 for all n ≥ 0 and A(n) ≡ 5n+1 mod 8 for all n ≤ −1,
• A(d+ 3n) ≡ A(d)A(n) mod 9 for all d ∈ {0, 1, 2}, and
• A(pn) ≡ A(n) ≡ A(pn+ p− 1) mod p3 for all primes p ≥ 5.

A special case of a theorem of Straub [13, Theorem 1.2] shows that A(pn) ≡ A(n)
mod p3 for all n ∈ Z and all primes p ≥ 5. We prove this result another way, using
an approach similar to Gessel’s.

Proof of Theorem 7. Gessel proved A(n) ≡ 5n mod 8 for all n ≥ 0. For n ≤ −1,
we use Proposition 3 to write

A(n) = A(−1− n) ≡ 5−1−n mod 8

≡ 51+n mod 8

since 5−1 ≡ 5 mod 8.
For p = 3, the proof is similar to the proof of Theorem 6. Gessel proved the

statement for n ≥ 0, so for n ≤ −1 we have

A(d+ 3n) = A(−1− (d+ 3n))

= A((2− d) + 3(−1− n))

≡ A(2− d)A(−1− n) mod 9

≡ A(d)A(n) mod 9

since one checks that A(2− d) ≡ A(d) mod 9.
Let p ≥ 5. Gessel proved A(pn) ≡ A(n) mod p3 for all n ≥ 0. We show

A(pn+ p− 1) ≡ A(n) mod p3 for all n ≥ 0. We write

A(pn+ p− 1) =

pn+p−1∑
k=0

(
pn+ p− 1

k

)2(
pn+ p− 1 + k

k

)2

=

p−1∑
d=0

n∑
m=0

(
pn+ p− 1

pm+ d

)2(
p (n+m+ 1) + d− 1

pm+ d

)2

=

p−1∑
d=0

n∑
m=0

(
pn+ p− 1

pm+ d

)2
p2(n+ 1)2

(p (n+m+ 1) + d)2

(
p (n+m+ 1) + d

pm+ d

)2

= S0 + S1

where

S0 =

n∑
m=0

(
pn+ p− 1

pm

)2
(n+ 1)2

(n+m+ 1)2

(
p (n+m+ 1)

pm

)2

is the summand for d = 0, and

S1 =

p−1∑
d=1

n∑
m=0

(
pn+ p− 1

pm+ d

)2
p2(n+ 1)2

(p (n+m+ 1) + d)2

(
p (n+m+ 1) + d

pm+ d

)2

.
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For S0, we have

S0 =

n∑
m=0

(pn+ p− pm)2

(pn+ p)2

(
pn+ p

pm

)2
(n+ 1)2

(n+m+ 1)2

(
p (n+m+ 1)

pm

)2

≡
n∑

m=0

(n−m+ 1)2

(n+m+ 1)2

(
n+ 1

m

)2(
n+m+ 1

m

)2

mod p3

=

n∑
m=0

(
n

m

)2(
n+m

m

)2

= A(n)

by Jacobsthal’s congruence
(
pa
pb

)
≡
(
a
b

)
mod p3, which holds for all primes p ≥ 5 [3].

For S1, we have

S1 ≡ p2

p−1∑
d=1

n∑
m=0

(
pn+ p− 1

pm+ d

)2
(n+ 1)2

d2

(
p (n+m+ 1) + d

pm+ d

)2

mod p3

≡ p2

p−1∑
d=1

n∑
m=0

(
p− 1

d

)2(
n

m

)2
(n+ 1)2

d2

(
d

d

)2(
n+m+ 1

m

)2

mod p3

by the Lucas congruence for binomial coefficients modulo p. Since(
p− 1

d

)
=

(p− 1)(p− 2) · · · (p− d)

1 · 2 · · · d
≡ (−1)(−2) · · · (−d)

1 · 2 · · · d
≡ (−1)d mod p,

we obtain

S1 ≡ p2

(
p−1∑
d=1

1

d2

)
n∑

m=0

(
n

m

)2

(n+ 1)2

(
n+m+ 1

m

)2

mod p3

≡ 0 mod p3

since
∑p−1
d=1

1
d2 ≡ 0 mod p, as established by Wolstenholme [14]. Therefore A(pn+

p− 1) = S0 + S1 ≡ A(n) mod p3.
Now for n ≤ −1 we have

A(pn) = A(−1− pn)

= A((p− 1) + p (−1− n))

≡ A(−1− n) mod p3

= A(n)

and

A(pn+ p− 1) = A(−1− (pn+ p− 1))

= A(p (−1− n))

≡ A(−1− n) mod p3

= A(n). �

Finally, we generalize Gessel’s congruence for A(d+pn) modulo p2 [6, Theorem 4].
Recall that A′(n) is given by Equation (3). Since A′(n) ∈ Q for every n ≥ 0, it
follows that if the denominator of A′(n) is not divisible by p then we can interpret
A′(n) modulo p2.
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Theorem 8. Let p be a prime, and let d ∈ {0, 1, . . . , p − 1}. The denominator of
A′(d) is not divisible by p. Moreover, for all n ∈ Z,

(10) A(d+ pn) ≡ (A(d) + pnA′(d))A(n) mod p2.

Proof. Gessel proved the statement for n ≥ 0. The same approach allows us to
prove the general case.

Fix n ∈ Z. For each d ∈ {0, 1, . . . , p − 1}, define cd ∈ {0, 1, . . . , p − 1} such
that A(d + pn) ≡ A(d)A(n) + pcd mod p2; this can be done by Theorem 6. Let
c−1 = 0. (The value of c−1 does not actually matter, since it will be multiplied
by 0.) We show that (cd)0≤d≤p−1 and (nA′(d)A(n))0≤d≤p−1 satisfy the same re-
currence and initial conditions modulo p; this will imply cd ≡ nA′(d)A(n) mod p.
Theorem 7 implies that A(pn) ≡ A(n) mod p2, so c0 = 0. Since A′(0) = 0, the
initial conditions are equal.

Let d ∈ {1, 2, . . . , p− 1}. Write Equation (1) as

(11)

2∑
i=0

ri(n)A(n− i) = 0,

where each ri(n) is a polynomial in n with integer coefficients. Note that Equa-
tion (11) holds for all n ∈ Z. Substituting d+ pn for n in Equation (11) gives

2∑
i=0

ri(d+ pn)A(d− i+ pn) = 0.

If d− i = −1 then ri(d+pn) = r2(1+pn) = (pn)3 ≡ 0 mod p2, hence the arbitrary
value of c−1. Therefore, using the Taylor expansion of ri(n), we have

2∑
i=0

(
ri(d) + pnr′i(d)

)(
A(d− i)A(n) + pcd−i

)
≡ 0 mod p2.

Since
∑2
i=0 ri(d)A(d− i) = 0, expanding and dividing by p gives

2∑
i=0

(
ri(d)cd−i + nr′i(d)A(d− i)A(n)

)
≡ 0 mod p.

This gives a recurrence satisfied by (cd)0≤d≤p−1 that can be used to compute
c1, c2, . . . , cp−1 since r0(d) = d3 6≡ 0 mod p.

To obtain a recurrence for (nA′(d)A(n))0≤d≤p−1, we differentiate Equation (5)
to obtain

2∑
i=0

(
ri(d)A′(d− i) + r′i(d)A(d− i)

)
= 0.

Since A′(0) and A′(1) are integers and r0(d) 6≡ 0 mod p, the denominator of A′(d)
is not divisible by p. By multiplying by nA(n), we obtain

2∑
i=0

(
ri(d)nA′(d− i)A(n) + nr′i(d)A(d− i)A(n)

)
= 0.

By subtracting this from the recurrence for (cd)0≤d≤p−1, we see that

2∑
i=0

ri(d)
(
cd−i − nA′(d− i)A(n)

)
≡ 0 mod p.
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Since r0(d) 6≡ 0 mod p, it follows that cd ≡ nA′(d)A(n) mod p for all d ∈
{0, 1, . . . , p− 1}. �

In the case p = 3, Theorem 8 gives a second proof of the congruence A(d+3n) ≡
A(d)A(n) mod 9 from Theorem 7, since A′(0) ≡ A′(1) ≡ A′(2) ≡ 0 mod 3. For
larger primes, in general A(d+pn) 6≡ A(d)A(n) mod p2. However, if we restrict to
certain sets of base-p digits, then we do obtain congruences that hold modulo p2.
For example, if d ∈ {0, 2, 4}, then

A(d+ 5n) ≡ A(d)A(n) mod 25.

This was proven by the authors [12] by computing an automaton for A(n) mod 25.
Since A(0) ≡ 1 ≡ A(4) mod 25 and A(2) ≡ 23 mod 25, this implies A(n) ≡
23e2(n) mod 25 for all n ≥ 0 whose base-5 digits belong to {0, 2, 4}, where e2(n)
is the number of 2s in the base-5 representation of n. Theorem 2, reformulated as
the following theorem, generalizes this result to other primes.

We say that the set D ⊆ {0, 1, . . . , p − 1} supports a Lucas congruence for the
sequence s(n)n∈Z modulo pα if s(d + pn) ≡ s(d)s(n) mod pα for all d ∈ D and
for all n ∈ Z. As mentioned in the proof of Theorem 6, Malik and Straub [9,
Lemma 6.2] proved that A(d) ≡ A(p− 1− d) mod p for each d ∈ {0, 1, . . . , p− 1}.
Let D(p) be the set of base-p digits for which this congruence holds modulo p2;
that is,

D(p) =
{
d ∈ {0, 1, . . . , p− 1} : A(d) ≡ A(p− 1− d) mod p2

}
.

Theorem 9. The set D(p) is the maximum set of digits that supports a Lucas
congruence for the Apéry numbers modulo p2.

Proof. Let d ∈ D(p), so that A(d) ≡ A(p − 1 − d) mod p2. Letting n = −1 in
Theorem 8 gives A(d − p) ≡ A(d) − pA′(d) mod p2. Applying Proposition 3, we
find

pA′(d) ≡ A(d)−A(d− p) mod p2

= A(d)−A(p− 1− d)

≡ 0 mod p2.

Therefore it follows from Theorem 8 that, for all n ∈ Z,

A(d+ pn) ≡ (A(d) + pnA′(d))A(n) mod p2

≡ A(d)A(n) mod p2.

Therefore D(p) supports a Lucas congruence for the Apéry numbers modulo p2.
To see that D(p) is the maximum such set, assume A(d + pn) ≡ A(d)A(n)

mod p2 for all n ∈ Z. Then

(A(d) + pnA′(d))A(n) ≡ A(d+ pn) mod p2

≡ A(d)A(n) mod p2,

and it follows that pnA′(d)A(n) ≡ 0 mod p2 for all n ∈ Z. Therefore A(d)−A(p−
1− d) = A(d)−A(d− p) ≡ pA′(d) ≡ 0 mod p2. �

As a special case, we obtain the following congruence, since {0, p − 1} ⊆ D(p)
by Theorem 7, and A(0) = 1 ≡ A(p− 1) mod p2.
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Corollary 10. Let p 6= 2 and n ≥ 0. If the base-p digits of n all belong to
{0, p−1

2 , p − 1}, then A(n) ≡ A(p−1
2 )e(n) mod p2 where e(n) is the number of oc-

currences of the digit p−1
2 .

These are the first several primes with digit sets D(p) containing at least 4 digits:

p D(p)
7 {0, 2, 3, 4, 6}
23 {0, 7, 11, 15, 22}
43 {0, 5, 18, 21, 24, 37, 42}
59 {0, 6, 29, 52, 58}
79 {0, 18, 39, 60, 78}
103 {0, 17, 51, 85, 102}
107 {0, 14, 21, 47, 53, 59, 85, 92, 106}
127 {0, 17, 63, 109, 126}
131 {0, 62, 65, 68, 130}
139 {0, 68, 69, 70, 138}
151 {0, 19, 75, 131, 150}
167 {0, 35, 64, 83, 102, 131, 166}

A natural question, which we do not address here, is the following. How big can
|D(p)| be, as a function of p?

Theorem 7 implies the following Lucas congruence modulo p3.

Theorem 11. Let p ≥ 5 and n ≥ 0. If the base-p digits of n all belong to {0, p−1},
then A(n) ≡ 1 mod p3.

Experiments do not suggest the existence of any additional Lucas congruences
for the Apéry numbers modulo p3. We leave this as open question.
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(1985) 141–155.
[2] Francis Brown, Mixed Tate motives over Z, Annals of Mathematics 175 (2012) 949–976.

[3] V. Brun, J. O. Stubban, J. E. Fjeldstad, R. Tambs Lyche, K. E. Aubert, W. Ljunggren,
and E. Jacobsthal, On the divisibility of the difference between two binomial coefficients,
Skandinaviske Matematikerkongress 11 (1949) 42–54.

[4] J. Cresson, J. S. Fischler, and T. Rivoal, Séries hypergéométriques multiples et polyzêtas,
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